Exercise 3.4.4

Suppose that $f(x)$ and $d f / d x$ are piecewise smooth.
(a) Prove that the Fourier sine series of a continuous function $f(x)$ can be differentiated term by term only if $f(0)=0$ and $f(L)=0$.
(b) Prove that the Fourier cosine series of a continuous function $f(x)$ can be differentiated term by term.

Solution

Part (a)

If $f(x)$ is piecewise smooth on $0 \leq x \leq L$, then it has a Fourier sine series.

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

The derivative of $f(x)$ is expected to be a series of cosines; because $d f / d x$ is also piecewise smooth, it has a Fourier cosine series.

$$
\begin{equation*}
\frac{d f}{d x}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

The aim is to show that

$$
A_{0}=0 \quad \text { and } \quad A_{n}=\frac{n \pi}{L} B_{n}
$$

and to determine the conditions for which these formulas hold. To get A_{0}, integrate both sides of equation (1) with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \frac{d f}{d x} d x & =\int_{0}^{L}\left(A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}\right) d x \\
& =A_{0} \int_{0}^{L} d x+\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0} \\
& =A_{0}(L)
\end{aligned}
$$

Solve for A_{0}.

$$
\begin{aligned}
A_{0} & =\frac{1}{L} \int_{0}^{L} \frac{d f}{d x} d x \\
& =\frac{1}{L}[f(L)-f(0)]
\end{aligned}
$$

Only if $f(L)=f(0)$ does $A_{0}=0$.

To get A_{n}, multiply both sides of equation (1) by $\cos \frac{p \pi x}{L}$, where p is an integer,

$$
\frac{d f}{d x} \cos \frac{p \pi x}{L}=A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \frac{d f}{d x} \cos \frac{p \pi x}{L} d x & =\int_{0}^{L}\left(A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}\right) d x \\
& =A_{0} \underbrace{\int_{0}^{L} \cos \frac{p \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty} A_{n} \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L} d x
\end{aligned}
$$

Because the cosine functions are orthogonal, this second integral on the right is zero if $n \neq p$. Only if $n=p$ does it yield a nonzero result.

$$
\begin{aligned}
\int_{0}^{L} \frac{d f}{d x} \cos \frac{n \pi x}{L} d x & =A_{n} \int_{0}^{L} \cos ^{2} \frac{n \pi x}{L} d x \\
& =A_{n}\left(\frac{L}{2}\right)
\end{aligned}
$$

Solve for A_{n}.

$$
\begin{aligned}
A_{n} & =\frac{2}{L} \int_{0}^{L} \frac{d f}{d x} \cos \frac{n \pi x}{L} d x \\
& =\frac{2}{L}\left[\left.f(x) \cos \frac{n \pi x}{L}\right|_{0} ^{L}-\int_{0}^{L} f(x) \frac{d}{d x}\left(\cos \frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}\left[f(L) \cos n \pi-f(0)-\int_{0}^{L} f(x)\left(-\frac{n \pi}{L} \sin \frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}\left[f(L)(-1)^{n}-f(0)\right]+\frac{n \pi}{L}\left[\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x\right] \\
& =\frac{2}{L}\left[f(L)(-1)^{n}-f(0)\right]+\frac{n \pi}{L} B_{n}
\end{aligned}
$$

Only if $f(L)=f(0)=0$ does $A_{n}=(n \pi / L) B_{n}$. Therefore, the Fourier sine series can be differentiated term by term if f is continuous and only if $f(L)=f(0)=0$.

Part (b)

If $f(x)$ is piecewise smooth on $0 \leq x \leq L$, then it has a Fourier cosine series.

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}
$$

The derivative of $f(x)$ is expected to be a series of sines; because $d f / d x$ is also piecewise smooth, it has a Fourier sine series.

$$
\begin{equation*}
\frac{d f}{d x}=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \tag{2}
\end{equation*}
$$

The aim is to show that

$$
B_{n}=-\frac{n \pi}{L} A_{n}
$$

and to determine the conditions for which this formula holds. Multiply both sides of equation (2) by $\sin \frac{p \pi x}{L}$, where p is an integer,

$$
\frac{d f}{d x} \sin \frac{p \pi x}{L}=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \frac{d f}{d x} \sin \frac{p \pi x}{L} d x & =\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x \\
& =\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x
\end{aligned}
$$

Because the sine functions are orthogonal with one another, this integral on the right is zero if $n \neq p$. Only if $n=p$ does it yield a nonzero result.

$$
\begin{aligned}
\int_{0}^{L} \frac{d f}{d x} \sin \frac{n \pi x}{L} d x & =B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x \\
& =B_{n}\left(\frac{L}{2}\right)
\end{aligned}
$$

Solve for B_{n}.

$$
\begin{aligned}
B_{n} & =\frac{2}{L} \int_{0}^{L} \frac{d f}{d x} \sin \frac{n \pi x}{L} d x \\
& =\frac{2}{L}\left[\left.f(x) \sin \frac{n \pi x}{L}\right|_{0} ^{L}-\int_{0}^{L} f(x) \frac{d}{d x}\left(\sin \frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}\left[f(L) \sin n \pi-\int_{0}^{L} f(x)\left(\frac{n \pi}{L} \cos \frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}\left[-\frac{n \pi}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x\right] \\
& =-\frac{n \pi}{L}\left[\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x\right] \\
& =-\frac{n \pi}{L} A_{n}
\end{aligned}
$$

Therefore, the Fourier cosine series can be differentiated term by term if f is continuous.

